Treatment Planning System for Small Field Dosimetry

Puangpen Tangboonduangjit, Ph.D.

Radiation Oncology Division, Diagnostic and Therapeutic Radiology Department, Faculty of Medicine Ramathibodi Hospital,

Mahidol University

•I have no conflict of interest to disclose.

Agenda

- Introduction of dose components of photon beams
- Types of algorithms
 - Correction-based, Model-based, Principle-based
- Why Principle-based is required for small field?
- Beam configuration of Monte Carlo simulation algorithm
- Conclusions

Physical Background

- Four main dose components for photon beams
 - 1. The primary dose (primary photon)
 - Dominates more than 70% of total dose
 - 2. The phantom scatter dose (scattered photon)
 - The second-largest contribution, represents 30% of total dose
 - 3. The head scatter dose (scattered photon)
 - Less importance, 5-10% of total dose
 - 4. The contaminant charged-particle energy deposition (secondary electron)
 - Large influence, especially for high-energy photon beams, but only at small depths (buildup region).

Measurement basedClassical
(Correction-based)1Equivalent depth and ratio of
TAR (1D)
$$CF(d,r) = \frac{TAR(d',r)}{TAR(d,r)}$$
2Power-law method (1D) $CF(d,r) = \frac{TAR(d_1,r)^{\rho_1-\rho_2}}{TAR(d_2,r)^{1-\rho_2}}$ 3ETAR (3D)
 $CF(d,r) = TAR(d', \tilde{r})/TAR(d,r)$ 4Fast Fourier transformations
(2D)

6)

Measurement PDD,o/p,profile Calculation \rightarrow SSD, depth, fs, etc

RTAR, Batho, ETAR

Correction for Patient Shape and Inhomogeneities

Patient Shape

- 1.Effective SSD method
- 2.Ratio of TAR or TPR method
- <mark>3.Isodose shift method</mark>

Inhomogeneities

- 1. Ratio of TAR (or TPR) Method
- 2. Power-Law Correction (Batho Correction)
- 3. Equivalent Tissue Air Ratio (ETAR) Correction

Correction for Patient Shape

Isodose shift method

Parameter k used in the isodose shift method for correcting isodose distributions for an irregular surface

Photon energy (MV)	k (approximate)
< 1	0.8
⁶⁰ Co - 5	0.7
5-15	0.6
15-30	0.5
>30	0.4

Correction for Inhomogeneities

Equivalent Tissue Air Ratio Method (ETAR)

 Considering the effect of scattering structures by the scaling of the field size parameter (account for the 3D shape of the inhomogeneity)

• CF =
$$\frac{T(d',r')}{T(d,r)}$$

d' = d .
$$\rho$$
 = water equivalent depth

- d = actual depth
- $r' = r \cdot \rho' = scaled field size dimension$
 - r = beam dimension at depth d
 - ρ'_{ijk} = weighted density of the irradiated volume (scatter elements)
- It is the first practical method for computerized treatment planning using CT data

Equivalent Path Length (EPL)

FIGURE 25.1

Illustration of the equivalent path length method: the attenuation at point P for a thickness t_m of a material of electronic density relative to water ρ_m is assumed to be the same as for a *scaled* thickness t_w of water where $t_w = t_m \cdot \rho_m$. This is rigorous for primary photons when only Compton interactions with peripheral electrons are considered (same total number of electrons/cm² interposed between the source and point P).

Primary-Scatter separation

Principle of the method

- This method developed to solve the problem of dose calculation in irregular fields such as mantle fields (Cunningham et al. 1972).
- This idea originated from Clarkson's scatter integration method.
- This method uses the Scatter-Air Ratio (SAR), defined as the ratio of the dose at a point due to the scattered radiation only to the dose in free space at the same point (Cunningham 1972)

$$\Box \qquad SAR(z, A_z) = TAR(z, A_z) - TARO(z)$$

- \Box TAR(z,A_z) = tissue-air ratio at a depth z in the field of size A_z
- □ TAR0(z) = tissue-air ratio at the same depth but in a field of zero area (to represent the primary radiation)

Physical Background

- Four main dose components for photon beams
 - I. The primary dose (primary photon)
 - Dominates more than 70% of total dose
 - 2. The phantom scatter dose (scattered photon)
 - The second-largest contribution, represents 30% of total dose
 - 3. The head scatter dose (scattered photon)
 - Less importance, 5-10% of total dose
 - 4. The contaminant charged-particle energy deposition (secondary electron)
 - Large influence, especially for high-energy photon beams, but only at small depths (buildup region).

Use of Point Kernels

15

Point Kernels - Aliases

Dose Spread Array (DSA) - Mackie Differential SAR (d²SAR) - Cunningham Dose Spread Function - Cunningham Differential Pencil Beam - Mohan Point Spread Kernel - Ahnesjo/Brahme Influence Function - Roesch Iso-Scatter Function - J. Wong

Physics based

3D calculation (Model-based)

Type A	Type B
(Longitudinal	(Long & Lateral
scaling)	scaling)
 Convolution 2D pencil beam kernel 	 Convolution /Superpositi on (CCC) 3D pencil beam kernel (AAA)

Scatter kernels of different dimensions (AAPM #85)

Model-based (Type B)

AAA

- Source parameters are pre-calculated by MC simulations and fitted to the measured data during the configuration process
- Cartesian coordinate system (x, y, z)

Model-based (Type B)

AAA

- Source parameters are pre-calculated by MC simulations and fitted to the measured data during the configuration process
- Cartesian coordinate system (x, y, z)

CCC

Spherical coordinates: r, θ , ϕ

Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media Anders Annesi0^m Department of Radiation Physics, Kamlinska Institute and University of Stockholm, Box 60211, 5-104.01 Stockholm, Stenden

(Received 15 August 1988; accepted for publication 3 May 1989)

Tom Knoos, Lund, Sweden

Dosimetric validation of Acuros® XB with Monte Carlo methods for photon dose calculations

K. Bush, I. M. Gagne, S. Zavgorodni, W. Ansbacher, and W. Beckham

Citation: Medical Physics 38, 2208 (2011); doi: 10.1118/1.3567146

FIG. 2. Heterogeneous interface phantom (left) and bone/lung phantom (right) geometries. Locations of lateral dose profiles (d_1, d_2, d_3) and DD profiles are indicated. In each case, $\rho 2$ is assigned a density of 1.0 g cm⁻³. $\rho 1$ is assigned a density of air (0.001 g cm⁻³), low-density lung (0.1 g cm⁻³), or lung (0.24 g cm⁻³). Each bone structure (indicated in white) was assigned a uniform density of 1.5 g cm⁻³.

Heterogeneous phantom: $\rho 1 = 0.24, 0.1, 0.001 \text{ g/cm}^3$ $\rho 2 = 1 \text{ g/cm}^3$ Bone = 1.5 g/cm³

$4.0 \times 4.0 \text{ cm}^2$, 6 MV photon beam

$4.0 \times 4.0 \text{ cm}^2$, **18 MV** photon beam

- d₁

d2

- d₃

ρ2

Bone = 1.5 g/cm^3 , Lung 0.24 g cm⁻³

Results for tomotherapy

Sterpin et al Med Phys 2009

High energy photon

• Longer range of charged particle

Principle based (Type C)

Deterministic algorithm

- Finite
- Using LBTE

Stochastic algorithm (Monte Carlo)

- Random
- Statistical uncertainty

Simulation of Clinical Accelerators

2012 AAPM Annual Meeting - Session: Source Modeling and Beam Commissioning for Clinical Monte Carlo

A schematic illustration of a Monte Carlo Photon History

Sample energy, direction, and starting position Sample distance to interaction Sample type of interaction Sample energy, direction, . . . of new particles

Sample particle tracks

Beam modeling requires special attention in small fields (here the exemple of Monte Carlo)

Classic approach

Tune electron source energy to match depth-dose and cross profiles

Tune electron source spot size and shape to match cross profiles and penumbras

EDMOND STERPIN KU LEUVEN AND UCLOUVAIN

For instance...

MC simulate in patient's tissue

Elements (Brainlab)

Reference beam model

- Pre-generated for different photon source sizes (corresponding to electron spot sizes in the bremsstrahlung target).
- User provide accurately measured output factors and cross profile penumbra widths of very small fields
- By comparing the calculated (from different photon source sizes) and measured parameters, then the Reference Beam Model shall be selected.

10.1 Beam Data for Varian 120 (Standard Irradiation and Flattening Filter Free Mode)

Task	No. of Measure- ments	Equipment	Done
Absolute dose in Gy per MU <i>MLC and jaw field size:</i> 100 x 100; SSD = 900; X = 0; Y = 0; Z = 100	1	Calibrated chamber	
CAX PDDs in water <i>MLC (jaw) field sizes:</i> 5 x 10 (8 x 12), 100 x 100 (100 x 100); SSD = 900	2	lonization chamber and high-resolution detector	
X profiles in water <i>MLC (jaw) field sizes:</i> 5 x 10 (8 x 12), 10 x 10 (12 x 12), 100 x 100 (100 x 100), 300 x 300 (300 x 300); SSD = 900; Y = 0; Z = 100	4	High-resolution de- tector	
Y profiles in water <i>MLC (jaw) field sizes:</i> 5 x 10 (8 x 12), 10 x 10 (12 x 12), 100 x 100 (100 x 100), 300 x 300 (300 x 300); SSD = 900; X = 0; Z = 100	4	High-resolution de- tector	
Output factors in water <i>MLC (jaw) field sizes:</i> 5 x 10 (8 x 12) 10 x 10 (12 x 12), 100 x 100 (100 x 100), 300 x 300 (300 x 300); SSD = 900; X = 0; Y = 0, Z = 100	4	lonization chamber and high-resolution detector	

Reference Beam Models (TrueBeam STx, 6x Std)

X profile, SSD=900 mm, Z=100 mm [MLC=5 x 5 mm²]

Right side of profile shows data normalized to same height to visualize Penumbra difference

Y profile, SSD=900 mm, Z=100 mm [MLC=5 x 5 mm²]

Right side of profile shows data normalized to same height to visualize Penumbra difference

Reference Beam Model selection

In Physics Administration 6.0 the output factor of the smallest field is used for RBM selection:

-	1000					_					
Re	ference Bea	m Model Vari	an TrueBeam	STx 6xStd,	Source Size 0	.4 mm	~				
The	output fact	tor of the sma	allest field is a	a good indica	tor for the ag	preement of	a reference b	eam model t	o measured	data.	
.tpi	ut factors (ir	ncluding small	field correct	ions) for diff	erent referen	ce beam mo	dels for MLC:	=5 x 5 mm²,	Jaws=8 x 8	mm ²	
	0.60										
	_		_								
	0.55				-+-	-	-				
0		1						-			
t rac	0.50										
h										-	
2											
	0.45										
	0.40										
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.
					50	urce size (m	smj				

Output Factors	×
Setup Conditions	
The output factors need to be measured in the same setup conditions as the nominal linac output	tl
Source Surface Distance (SSD): 900 mm, measurement depth 100 mm	
Small Eield Corrections	
Have output correction factors been applied for small fields, e.g. according to IAEA TRS #483?	
\bigcirc	

→ Your output factors use small-field corrections (e. g. IAEA TRS 483)
 → Your output factor also need to be corrected for proper model selection

Determination of Field output factors

TECHNICAL REPORTS SERIES NO. 483

Dosimetry of Small Static

Graph 1. Uncorrected field output factor

TABLE 26. FIELD OUTPUT CORR CONE AT 6 MV WFF AND FFF MAC	ECTIO CHINES	N FAC , AS A	TORS	$k_{Q_{\text{clin}},q}^{f_{\text{clin}},f}$	ensr FO 2msr FO	R FIE HE EQ	LDS (UIVAI	COLLI	MATE SQUA	D BY RE FII	AN M ELD SI	ILC O ZE	or si	TECHNICAL REPORTS SERIES NO.	83
Detector	Equivalent square field size, S_{clin} (cm)													Dosimetry of Small Sta Fields Used in Exte Beam Radiother An International Code of Pract	atic rnal rapy ice for
Detector	8.0	6.0	4.0	3.0	2.5	2.0	1.5	1.2	1.0	0.8	0.6	0.5	0.4	Spinstered by the lake of the	
Ionization chambers														_	
Exradin A14SL micro Shonka slimline	1.000	1.000	1.000	1.000	1.000	1.002	1.010	1.027	_	_	_	_	_		
Exradin A16 micro	1.000	1.000	1.000	1.000	1.001	1.003	1.008	1.017	1.027	1.043	_	_	_		
IBA/Wellhöfer CC01	1.002	1.004	1.007	1.008	1.008	1.009	1.011	1.013	1.018	1.027	1.047		_		
IBA/Wellhöfer CC04	1.000	1.000	1.000	1.000	1.000	1.002	1.009	1.022	1.041	_	_	_			
IBA/Wellhöfer CC13/IC10/IC15	1.000	1.000	1.000	1.001	1.002	1.009	1.030	_	_				_		
PTW 31002 Flexible	1.000	1.000	1.001	1.004	1.009	1.023	—	_	—	_	—	_	_		
PTW 31010 Semiflex	1.000	1.000	1.000	1.001	1.002	1.008	1.025	_	_				_		
PTW 31014 PinPoint	1.000	1.000	1.000	1.002	1.004	1.009	1.023	1.041	—		_	_			
PTW 31016 PinPoint 3D	1.000	1.000	1.000	1.001	1.001	1.004	1.013	1.025	1.039		_		_		

TABLE 26. FIELD OUTPUT CORRECTION FACTORS $k_{Q_{clin},Q_{msr}}^{f_{clin},f_{msr}}$ FOR FIELDS COLLIMATED BY AN MLC OR SR: CONE AT 6 MV WFF AND FFF MACHINES, AS A FUNCTION OF THE EQUIVALENT SQUARE FIELD SIZE (cont.)

TECHNICAL REPORTS SERIES NO. 483

etry of Small Static Ids Used in External Beam Radiotherapy

Detector					Equiva	alent squ	uare fiel	d size, S	S _{clin} (cm)				Dosir Fie An Reference
Detector	8.0	6.0	4.0	3.0	2.5	2.0	1.5	1.2	1.0	0.8	0.6	0.5	0.4	ا)
Real time solid state dosimeters														_
IBA PFD3G shielded diode	1.000	1.000	0.998	0.995	0.992	0.986	0.976	0.968	0.961	0.952	_		_	
IBA EFD3G unshielded diode	1.005	1.009	1.014	1.016	1.016	1.015	1.012	1.008	1.004	0.998	0.988	0.983	0.976	
IBA SFD unshielded diode (stereotactic)	1.008	1.017	1.025	1.029	1.031	1.032	1.030	1.025	1.018	1.007	0.990	0.978	0.963	
PTW 60008 shielded diode	1.000	1.000	1.000	0.998	0.995	0.990	0.977	0.962						
PTW 60012 unshielded diode	1.005	1.010	1.015	1.017	1.017	1.016	1.010	1.003	0.996	0.985	0.970	0.960	_	
PTW 60016 shielded diode	1.000	1.000	0.999	0.995	0.991	0.984	0.970	0.956					_	
PTW 60017 unshielded diode	1.004	1.007	1.010	1.011	1.011	1.008	1.002	0.994	0.986	0.976	0.961	0.952	_	
PTW 60018 unshielded diode (stereotactic)	1.004	1.007	1.010	1.011	1.009	1.006	0.998	0.990	0.983	0.973	0.960	0.952	_	
PTW 60003 natural diamond	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.001	1.003	1.009	1.026	1.045	_	
PTW 60019 CVD diamond	1.000	1.000	1.000	1.000	0.999	0.997	0.993	0.989	0.984	0.977	0.968	0.962	0.955	

TABLE 26. FIELD OUTPUT CORRECTION FACTORS $k_{Q_{clin},Q_{msr}}^{f_{clin},f_{msr}}$ FOR FIELDS COLLIMATED BY AN MLC OR SRS CONE AT 6 MV WFF AND FFF MACHINES, AS A FUNCTION OF THE EQUIVALENT SQUARE FIELD SIZE (cont.)

Detector		Equivalent square field size, S_{clin} (cm)												
Detector	8.0	6.0	4.0	3.0	2.5	2.0	1.5	1.2	1.0	0.8	0.6	0.5	0.4	
PTW 31018 liquid ion chamber	0.997	0.994	0.991	0.989	0.988	0.988	0.987	0.987	0.987	0.990	0.999	1.011	1.033	
Sun Nuclear EDGE Detector	1.000	1.000	1.000	0.999	0.998	0.994	0.986	0.976	0.966	0.951				
Standard Imaging W1 plastic scintillator	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

Note: The reference depth is 10 cm.

MC simulate in patient's tissue

TomoPen (TomoTherapy)

Monte Carlo beam model tuning

Classic approach

Tune electron source energy to match depth-dose and cross profiles

Tune electron source spot size and shape to match cross profiles and penumbras

- → Penumbras sensitive to detector used
- → Electron spot no so sensitive to change of penumbra width

EDMOND STERPIN KU LEUVEN AND UCLOUVAIN

Monte Carlo modeling of small photon fields: Quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small-field measurements

Alison J. D. Scott^{al} and Alan E. Nahum

Department of Physics, Clatterbridge Centre for Oncology, Clatterbridge Road, Wirral, Merseyside CH63 4JY, United Kingdom and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom

John D. Fenwick

Department of Physics, Clatterbridge Centre for Oncology, Clatterbridge Road, Wirral, Merseyside CH63 4JY, United Kingdom: Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom; and School of Cancer Studies, University of Liverpool, Liverpool L69 3GA, United Kingdom

Monte Carlo beam model tuning

Classic approach

Tune electron source energy to match depth-dose and cross profiles

Tune electron source spot size and shape to match cross profiles and penumbras

- → Penumbras sensitive to detector used
- → Electron spot no so sensitive to change of penumbra width

EDMOND STERPIN KU LEUVEN AND UCLOUVAIN

FIG. 6. The effect of electron spot size on the ratio of Monte Carlo calculated output factor to that measured with an unshielded diode [and corrected by a Monte Carlo calculated factor (Ref. 1)], plotted as a function of field size for a 15 MV photon beam. Error bars represent 2 s.d. uncertainty.

Small field output factors is a more sensitive measurement!

But also detector-sensitive...

There are alternative solutions

➔ TomoTherapy system

	Radiotherapy and Oncology 94 (2010) 229–234									
	Contents lists available at ScienceDirect Radiotherapy									
272 EV	Radiotherapy and Oncology									
ELSEVIER	journal homepage: www.thegreenjournal.com	11-12-1								
Monte Carlo sin	Monte Carlo simulation									
Monte Carlo by TomoTh	Monte Carlo-based analytical model for small and variable fields delivered by TomoTherapy									
Edmond Sterpin ^{a,c,} *, Brian T. Hundertmark ^c , Thomas R. Mackie ^{b,c} , Weiguo Lu ^b , Gustavo H. Olivera ^{b,c} , Stefaan Vynckier ^a										
^a Université Catholique de Louvain, Department of Radiotherapy and Oncology, Brussels, Belgium; ^b TomoTherapy Inc., Madison, WI, USA; ^c Department of Medical Physics, University of Wisconsin, Madison, WI, USA										

Small Field Dosimetry, Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy: The Future is Here

Southern Methodist University & UT Southwestern Medical Center Dallas, TX

Scanning a Beam Across the Phantom

- Nearly equal scatter conditions for small jaw settings
- If the source were a point source, the output would be directly proportional to the jaw field width
- No partial volume effects once scanning is complete

Invariant with Resolution and Phantom Material

Comparison with MC – Fine Tuning of the Electron Source Spot Size

DOI: 10.1002/acm2.1341 JOURNAL OF APPLIED CLINICAL AAPM REPORTS & DOCUMENTS MEDICAL PHYSICS • Review dose calculation algorithms • Correction, Model, Principle-based Mark W. Geurts ¹ Dustin J. Jacqmin ² Lindsay E. Jones ³ Stephen F. Kry ⁴ Dimitris N. Mihailidis ⁵ Jared D. Ohrt ⁴ Timothy Ritter ⁶ Jennifer B. Smilowitz ² Nicholai E. Wingroon ⁷		Received: 11 November 2021	Revised: 4 April 2022	Accepted: 6 April 2022					
 Review dose calculation algorithms Correction, Model, Principle-based Mark W. Geurts¹ Dustin J. Jacqmin² Lindsay E. Jones³ Stephen F. Kry⁴ Dimitris N. Mihailidis⁵ Jared D. Ohrt⁴ Timothy Ritter⁶ Jennifer B. Smilowitz² 	Conclusions	DOI: 10.1002/acm2.13641 AAPM REPORTS & DOCUMENTS MEDICAL PHYSICS							
	 Review dose calculation algorithms Correction, Model, Principle-based 	AAPM MED Commissio calculations Mark W. Geurts ¹ Dimitris N. Mihail	ICAL PHY ning and s—Megav	YSICS PRACTICE GUIDELINE 5.b: QA of treatment planning dose voltage photon and electron beams Jacqmin ² Lindsay E. Jones ³ Stephen F. Kry ⁴ d D. Ohrt ⁴ Timothy Ritter ⁶ Jennifer B. Smilowitz ²					

 Examples of beam configuration for MC simulation for <u>tuning electron</u> source spot size

- Using field o/p factor and profile
- Alternative → Using scanning beam to calculate dose/FW → independent to the detector's size
- All in all \rightarrow Validation & Verification are required.

Thank you!

